

Главными условиями получения оптически прозрачных эпоксидных композиций (ЭК) является использование чистых бесцветных смол, отвердителей и модифицирующих добавок, а также индивидуальный выбор режимов переработки.

Для получения бесцветных компонентов проводят соответствующий синтез или очищают промышленные марки различными методами. В таблицах 1 и 2 приведены физико-химические и оптические показатели исследовавшихся олигомеров различных классов: эпоксидиан овых (ЭД-24, ЭД-22, ЭД-20, ФОУ-9), галогенсодержащих (оксилин 5А, УП-631), циклоалифатических (УП-612, УП-632, УП-650Т, УП-656), алифатических (УП-650Д, ДЭГ-1), специальных (УП-637, УП-616, лапроксид-703) и диглицидилового эфира D,L камфорной кислоты (ДЭD,LKK), а также отвердителей: ангидридных (ИМТГФА, МГГФА, ГГФА), аминных (ПЭПА, ДЭТА, ТЭТА, УП-0633М, УП-0633, ДА-200, ДА-500, ДТБ-2) и высокомолекулярного продукта конденсации бутилметакрилата с диэтилентриамином (ОПН-1). Эпоксидные олигомеры очищались на дистилляционной установке с дистиллятором, работающим по принципу падающей пленки при давлениях 1-100 Па, а отвердители — на вакуумной установке при давлениях 133-665 Па.

Как известно, в реакции ангидридов дикарбоновых кислот с эпоксидной смолой первой стадией является раскрытие ангидридного кольца с образованием карбоксильной группы и моноэфира. Далее происходит взаимодействие образовавшегося моноэфира с эпоксидной группой и последовательное увеличение цепи. Однако, низкая активность ангидридных отвердителей ведет к тому, что отверждение эпоксидных смол в их присутствии приходится проводить в жестких условиях: 8-12 часов при температурах T = (150-170) оС в отсутствие и T = (100-120) оС — при наличии катализатора.

Техническая консультация

Марка	Массовая доля , %				Граница	Показатель	Коэффициент
	эпоксидных групп	хлора, не	летучих	при Т=25 ºС, Па*с	уровне 0,5 при толщине	преломления	коэффициент дисперсии Аббе, v _D
ЭД-24	24,0	0,4	0,3	8,0	328	1,569	32,5
ЭД-22 (исх.)	22,1-23,6	0,4	0,4	7,0-12,0	395-440	1,573	32,3
ЭД-22	23,5	0,4	0,4	9,0	326	1,573	32,3

Офис в Москве: +7 495 790 14 52, +7 495 149 86 99 (доб. 7641, 5054, 9874, 5566, 3547), +7 499 558 38 29, dann-25@bk.ru Отдел логистики: +7 495 149-86-99 Офис в Санкт-Петербурге: +7 812 317 28 28, +7 812 317 28 88, masla.kondor@yandex.ru - по вопросам приобретения масел, смазок, смазочных материалов и подбора аналогов

ЭД-20	21,5	0,5	0,5	13,5	317	1,575	32,4
ФОУ-9	23,5	0,5	0,2	10,0	330	1,571	32,0
ДЭD,LKK	25,0	0,1	0,5	0,5	335	1,483	57,3
Оксилин 5 А	13,3	0,1		1,2	342	1,491	55,6
УП-631	11,0	1,0	0,5	_	354	1,637	30,2
УП-637	33,5	1,2	0,5		352	1,540	42,1
УП-612	30,3	1,5	1,0	9,0 (40°C)	335	1,512	57,8
УП-632	31,5		1,0	0,4	361	1,495	56,0
УП-640	26,6	2,1	1,0	1,3	399	1,491	51,4
УП-650Т	43,7	2,5	1,0	0,4	355	1,487	59,4
УП-650Д	28,9	3,0	1,0	1,0	356	1,487	53,5
УП-656	41,0	3,0	1,0	0,04	374	1,473	58,0
УП-616	23,1	1,0	_	0,006	335	1,523	34,3
ДЭГ-1	33,8	1,4	1,5	0,07	325	1,458	44,0
Лапроксид 703	14,8	1,2	_	0,14	325	1,462	59,9

Таблица 2

Свойства отвердителей

Техническая консультация

IIVIanva	Стехиомет рический коэффициент	Температура кристал лизации, ºС	числотное Кислотное	Вязкость при T=25 ºC, мПа*с	Граница пропускания на уровне 0,5 при толщине слоя 4 мм, нм	Показатель преломления при Т=20 ºС, n _D	Коэффициент дисперсии Аббе, v _p
ИМТГФА (исх.)	3,92	18	650-690	30-80	415-500	1,495-1.502	43.6-51.8
ИМТГФА	3,92	18	650	30	350	1,498	46,9
МГГФА	3,92	-40	640	54	347	1,475	53,7
ГГФА	3,92	37	725	41 (40°C)	339	1,487	53,7
ПЭПА (исх.)	0,60-0,65	-26	<2 ¹ ; (19,5-22) ²	<200	420-500	1,495-1,509	45,8-47,1
ПЭПА	0,60			21	312	1,495	45,8
ДЭТА	0,48		$0,2^{1}$	20	287	1,483	48,2
ТЭТА	0,61		0,1 ¹	18	345	1,498	48,5
ОПН-1	1,01		0,25 ¹	63	354	1,464	
УП-0633М	0,92		26^{2}	40	354	1,496	49.4
УП-0633	1,62		18^{2}	100	358	1,485	50.0
ДА-200	1,25		0,85 ¹	10	295	1,453	59.9
ДА-500	1,30		0.90^{1}	12	302	1,451	60.1
ДТБ-2	2,21			150	360	1,497	49.3

Представляло интерес оценить изменение оптических свойств исходных компонентов под действием температуры. Спектральная зависимость показателя поглощения очищенного изометилтетрагидрофталевого ангидрида до и после термообработки при температуре отверждения показана на рис. 2. Видно, что при λ=400 нм показатель поглощения ИМТГФА почти не меняется. В то же время в непосредственной близости от фундаментальной полосы (λ<350нм) показатель поглощения резко возрастает- отвердитель «желтеет», что связано, вероятно, с образованием окрашенных продуктов изомеров в результате термоокислительных процессов. Отметим, что у ИМТГФА различных производителей эта картина проявляется по разному: у украинского и южнокорейского продукта она такая же, как на рис. 2, а российского и английского продукта выражена значительного слабее.

Офис в Москве: +7 495 790 14 52, +7 495 149 86 99 (доб. 7641, 5054, 9874, 5566, 3547), +7 499 558 38 29, dann-25@bk.ru Отдел логистики: +7 495 149-86-99 Офис в Санкт-Петербурге: +7 812 317 28 28, +7 812 317 28 88, masla.kondor@yandex.ru - по вопросам приобретения масел, смазок, смазочных материалов и подбора аналогов

В связи с вышеизложенным важнейшей задачей являлся поиск катализаторов, позволяющих понизить температуру отверждения ЭК, а значит замедлить явление «пожелтения» компонентов. Попутно решалась следующие задачи: уменьшения энергопотребления, сокращения продолжительности процесса переработки, оценки возможности его механизации и автоматизации. В качестве катализаторов были использованы вещества различных классов: производные имидазола, производные аминов, гетероциклические соединения, кислоты и их ангидриды, другие соединения, содержащие подвижный атом водорода. В таблице 3 представлены физико-химические свойства некоторых ускорителей, а также результаты исследований по получению оптически прозрачных ЭК с их использованием. В качестве эпоксидной основы и отвердителя применялись ЭД-22 и ИМТГФА, взятые в стехиометрическом соотношении, содержание катализатора — 0,25% по отношению к смоле, температура сушки T=130oC.

По вопросам приобретения Получение прозрачных эпоксидных композиций и получения подробной консультации по свойствам продукции, условиям поставки и заключению договора просим вас обратиться к менеджерам: